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INTRODUCTION

Chapter

1
• explain how experiments differ from observational

studies.
• discuss the concepts of placebo effect, blinding, and

confounding.

• discuss the role of random sampling in 
statistics.

Objectives
In this chapter we will look at a series of examples of areas in the life sciences in
which statistics is used, with the goal of understanding the scope of the field of
statistics. We will also

1.1 Statistics and the Life Sciences
Researchers in the life sciences carry out investigations in various settings: in the
clinic, in the laboratory, in the greenhouse, in the field. Generally, the resulting data
exhibit some variability. For instance, patients given the same drug respond some-
what differently; cell cultures prepared identically develop somewhat differently;
adjacent plots of genetically identical wheat plants yield somewhat different
amounts of grain. Often the degree of variability is substantial even when experi-
mental conditions are held as constant as possible.

The challenge to the life scientist is to discern the patterns that may be more or
less obscured by the variability of responses in living systems. The scientist must try
to distinguish the “signal” from the “noise.”

Statistics is the science of understanding data and of making decisions in the
face of variability and uncertainty. The discipline of statistics has evolved in
response to the needs of scientists and others whose data exhibit variability. The
concepts and methods of statistics enable the investigator to describe variability and
to plan research so as to take variability into account (i.e., to make the “signal”
strong in comparison to the background “noise” in data that are collected). Statisti-
cal methods are used to analyze data so as to extract the maximum information and
also to quantify the reliability of that information.

We begin with some examples that illustrate the degree of variability found in
biological data and the ways in which variability poses a challenge to the biological
researcher. We will briefly consider examples that illustrate some of the statistical
issues that arise in life sciences research and indicate where in this book the issues
are addressed.

The first two examples provide a contrast between an experiment that showed
no variability and another that showed considerable variability.
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Vaccine for Anthrax Anthrax is a serious disease of sheep and cattle. In 1881, Louis
Pasteur conducted a famous experiment to demonstrate the effect of his vaccine
against anthrax. A group of 24 sheep were vaccinated; another group of 24 unvacci-
nated sheep served as controls. Then, all 48 animals were inoculated with a virulent
culture of anthrax bacillus. Table 1.1.1 shows the results.1 The data of Table 1.1.1
show no variability; all the vaccinated animals survived and all the unvaccinated
animals died. �

Example
1.1.1

Bacteria and Cancer To study the effect of bacteria on tumor development, re-
searchers used a strain of mice with a naturally high incidence of liver tumors. One
group of mice were maintained entirely germ free, while another group were ex-
posed to the intestinal bacteria Escherichia coli. The incidence of liver tumors is
shown in Table 1.1.2.2

Example
1.1.2

In contrast to Table 1.1.1, the data of Table 1.1.2 show variability; mice given the
same treatment did not all respond the same way. Because of this variability, the
results in Table 1.1.2 are equivocal; the data suggest that exposure to E. coli increas-
es the risk of liver tumors, but the possibility remains that the observed difference in
percentages (62% versus 39%) might reflect only chance variation rather than an
effect of E. coli. If the experiment were replicated with different animals, the
percentages might change substantially.

One way to explore what might happen if the experiment were replicated is to
simulate the experiment, which could be done as follows. Take 62 cards and write
“liver tumors” on 27 ( ) of them and “no liver tumors” on the other
35 ( ). Shuffle the cards and randomly deal 13 cards into one stack (to corre-
spond to the E. coli mice) and 49 cards into a second stack. Next, count the number
of cards in the “E. coli stack” that have the words “liver tumors” on them—to corre-
spond to mice exposed to E. coli who develop liver tumors—and record whether
this number is greater than or equal to 8. This process represents distributing
27 cases of liver tumors to two groups of mice (E. coli and germ free) randomly, with
E. coli mice no more likely, nor any less likely, than germ-free mice to end up with
liver tumors.

=  5 +  30
=  8 +  19

Table 1.1.1 Response of sheep to anthrax

Treatment

Response Vaccinated Not vaccinated

Died of anthrax 0 24
Survived 24 0

Total 24 24
Percent survival 100% 0%

Table 1.1.2 Incidence of liver tumors in mice

Treatment

Response E. coli Germ free

Liver tumors 8 19
No liver tumors 5 30

Total 13 49
Percent with liver tumors 62% 39%
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If we repeat this process many times (say, 10,000 times, with the aid of a com-
puter in place of a physical deck of cards), it turns out that roughly 12% of the time
we get 8 or more E. coli mice with liver tumors. Since something that happens 12%
of the time is not terribly surprising, Table 1.1.2 does not provide significant evi-
dence that exposure to E. coli increases the incidence of liver tumors. �

In Chapter 10 we will discuss statistical techniques for evaluating data such as
those in Tables 1.1.1 and 1.1.2. Of course, in some experiments variability is minimal
and the message in the data stands out clearly without any special statistical analy-
sis. It is worth noting, however, that absence of variability is itself an experimental
result that must be justified by sufficient data. For instance, because Pasteur’s an-
thrax data (Table 1.1.1) show no variability at all, it is intuitively plausible to con-
clude that the data provide “solid” evidence for the efficacy of the vaccination. But
note that this conclusion involves a judgment; consider how much less “solid” the
evidence would be if Pasteur had included only 3 animals in each group, rather than
24. Statistical analyses can be used to make such a judgment, that is, to determine if
the variability is indeed negligible. Thus, a statistical view can be helpful even in the
absence of variability.

The next two examples illustrate additional questions that a statistical approach
can help to answer.

Flooding and ATP In an experiment on root metabolism, a plant physiologist grew
birch tree seedlings in the greenhouse. He flooded four seedlings with water for one
day and kept four others as controls. He then harvested the seedlings and analyzed
the roots for adenosine triphosphate (ATP). The measured amounts of ATP
(nmoles per mg tissue) are given in Table 1.1.3 and displayed in Figure 1.1.1.3

Example
1.1.3

Table 1.1.3 ATP concentration in birch 
tree roots (nmol/mg)

Flooded Control

1.45 1.70
1.19 2.04

1.05 1.49

1.07 1.91

Flooded Control
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Figure 1.1.1 ATP concentration in birch tree roots

The data of Table 1.1.3 raise several questions: How should one summarize the
ATP values in each experimental condition? How much information do the data
provide about the effect of flooding? How confident can one be that the reduced
ATP in the flooded group is really a response to flooding rather than just random
variation? What size experiment would be required in order to firmly corroborate
the apparent effect seen in these data? �
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Chapters 2, 6, and 7 address questions like those posed in Example 1.1.3. One
question that we can address here is whether the data in Table 1.1.3 are consistent
with the claim that flooding has no effect on ATP concentration, or instead provide
significant evidence that flooding affects ATP concentrations. If the claim of no ef-
fect is true, then should we be surprised to see that all four of the flooded observa-
tions are smaller than each of the control observations? Might this happen by
chance alone? If we wrote each of the numbers 1.05, 1.07, 1.19, 1.45, 1.49, 1.91, 1.70,
and 2.04 on cards, shuffled the eight cards, and randomly dealt them into two piles,
what is the chance that the four smallest numbers would end up in one pile and the
four largest numbers in the other pile? It turns out that we could expect this to hap-
pen 1 time in 35 random shufflings, so “chance alone” would only create the kind of
imbalance seen in Figure 1.1.1 about 2.9% of the time (since 1/35 0.029). Thus, we
have some evidence that flooding has an effect on ATP concentration. We will
develop this idea more fully in Chapter 7.

MAO and Schizophrenia Monoamine oxidase (MAO) is an enzyme that is thought to
play a role in the regulation of behavior. To see whether different categories of
schizophrenic patients have different levels of MAO activity, researchers collected
blood specimens from 42 patients and measured the MAO activity in the platelets.
The results are given in Table 1.1.4 and displayed in Figure 1.1.2. (Values are
expressed as nmol benzylaldehyde product per 108 platelets per hour.)4 Note that it
is much easier to get a feeling for the data by looking at the graph (Figure 1.1.2)
than it is to read through the data in the table. The use of graphical displays of data
is a very important part of data analysis. �

Example
1.1.4
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Figure 1.1.2 MAO activity in schizophrenic patients

Table 1.1.4 MAO activity in schizophrenic patients

Diagnosis MAO activity

I: 6.8 4.1 7.3 14.2 18.8

Chronic undifferentiated 9.9 7.4 11.9 5.2 7.8

schizophrenic 7.8 8.7 12.7 14.5 10.7

(18 patients) 8.4 9.7 10.6

II: 7.8 4.4 11.4 3.1 4.3

Undifferentiated with 10.1 1.5 7.4 5.2 10.0

paranoid features 3.7 5.5 8.5 7.7 6.8

(16 patients) 3.1

III: 6.4 10.8 1.1 2.9 4.5

Paranoid schizophrenic 
(8 patients)

5.8 9.4 6.8

To analyze the MAO data, one would naturally want to make comparisons
among the three groups of patients, to describe the reliability of those comparisons,
and to characterize the variability within the groups. To go beyond the data to a
biological interpretation, one must also consider more subtle issues, such as the fol-
lowing: How were the patients selected? Were they chosen from a common hospital
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population, or were the three groups obtained at different times or places?
Were precautions taken so that the person measuring the MAO was unaware of the
patient’s diagnosis? Did the investigators consider various ways of subdividing the
patients before choosing the particular diagnostic categories used in Table 1.1.4? At
first glance, these questions may seem irrelevant—can we not let the measurements
speak for themselves? We will see, however, that the proper interpretation of data
always requires careful consideration of how the data were obtained.

Chapters 2, 3, and 8 include discussions of selection of experimental subjects
and of guarding against unconscious investigator bias. In Chapter 11 we will show
how sifting through a data set in search of patterns can lead to serious misinterpre-
tations and we will give guidelines for avoiding the pitfalls in such searches.

The next example shows how the effects of variability can distort the results of
an experiment and how this distortion can be minimized by careful design of the
experiment.

Food Choice by Insect Larvae The clover root curculio, Sitona hispidulus, is a root-
feeding pest of alfalfa. An entomologist conducted an experiment to study food
choice by Sitona larvae. She wished to investigate whether larvae would preferen-
tially choose alfalfa roots that were nodulated (their natural state) over roots whose
nodulation had been suppressed. Larvae were released in a dish where both nodu-
lated and nonnodulated roots were available.After 24 hours, the investigator count-
ed the larvae that had clearly made a choice between root types. The results are
shown in Table 1.1.5.5

The data in Table 1.1.5 appear to suggest rather strongly that Sitona larvae
prefer nodulated roots. But our description of the experiment has obscured an
important point—we have not stated how the roots were arranged. To see the rele-
vance of the arrangement, suppose the experimenter had used only one dish, placing
all the nodulated roots on one side of the dish and all the nonnodulated roots on the
other side, as shown in Figure 1.1.3(a), and had then released 120 larvae in the cen-
ter of the dish.This experimental arrangement would be seriously deficient, because
the data of Table 1.1.5 would then permit several competing interpretations—for
instance, (a) perhaps the larvae really do prefer nodulated roots; or (b) perhaps
the two sides of the dish were at slightly different temperatures and the larvae were
responding to temperature rather than nodulation; or (c) perhaps one larva chose
the nodulated roots just by chance and the other larvae followed its trail. Because of
these possibilities the experimental arrangement shown in Figure 1.1.3(a) can yield
only weak information about larval food preference.

Example
1.1.5

(a) (b)

Figure 1.1.3 Possible arrangements of food choice
experiment. The dark-shaded areas contain nodulated
roots and the light-shaded areas contain
nonnodulated roots.
(a) A poor arrangement.
(b) A good arrangement.

Table 1.1.5 Food choice by Sitona larvae

Choice Number of larvae

Chose nodulated roots 46

Chose nonnodulated roots 12

Other (no choice, died, lost) 62

Total 120
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Fat-free mass (kg)

E
ne

rg
y 

ex
pe

nd
it

ur
e 

(k
ca

l)

50 55 60 65 70 75

1800

2000

2200

2400

2600

Figure 1.1.4 Fat-free mass and energy expenditure in
seven men. Each man is represented by a different symbol.

The experiment was actually arranged as in Figure 1.1.3(b), using six dishes with
nodulated and nonnodulated roots arranged in a symmetric pattern. Twenty larvae
were released into the center of each dish. This arrangement avoids the pitfalls of
the arrangement in Figure 1.1.3(a). Because of the alternating regions of nodulated
and nonnodulated roots, any fluctuation in environmental conditions (such as tem-
perature) would tend to affect the two root types equally. By using several dishes,
the experimenter has generated data that can be interpreted even if the larvae
do tend to follow each other. To analyze the experiment properly, we would need
to know the results in each dish; the condensed summary in Table 1.1.5 is not
adequate. �

In Chapter 11 we will describe various ways of arranging experimental material
in space and time so as to yield the most informative experiment, as well as how to
analyze the data to extract as much information as possible and yet resist the temp-
tation to overinterpret patterns that may represent only random variation.

The following example is a study of the relationship between two measured
quantities.

Body Size and Energy Expenditure How much food does a person need? To investigate
the dependence of nutritional requirements on body size, researchers used under-
water weighing techniques to determine the fat-free body mass for each of seven
men. They also measured the total 24-hour energy expenditure during conditions of
quiet sedentary activity; this was repeated twice for each subject. The results are
shown in Table 1.1.6 and plotted in Figure 1.1.4.6

Example
1.1.6

Table 1.1.6 Fat-free mass and energy expenditure

Subject
Fat-free mass 

(kg)
24-hour energy 

expenditure (kcal)

1 49.3 1,851 1,936
2 59.3 2,209 1,891
3 68.3 2,283 2,423
4 48.1 1,885 1,791
5 57.6 1,929 1,967
6 78.1 2,490 2,567
7 76.1 2,484 2,653

A primary goal in the analysis of these data would be to describe the relation-
ship between fat-free mass and energy expenditure—to characterize not only the
overall trend of the relationship, but also the degree of scatter or variability in the
relationship. (Note also that, to analyze the data, one needs to decide how to handle
the duplicate observations on each subject.) �
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The focus of Example 1.1.6 is on the relationship between two variables: fat-
free mass and energy expenditure. Chapter 12 deals with methods for describing
such relationships, and also for quantifying the reliability of the descriptions.

A Look Ahead

Where appropriate, statisticians make use of the computer as a tool in data analysis;
computer-generated output and statistical graphics appear throughout this book.
The computer is a powerful tool, but it must be used with caution. Using the com-
puter to perform calculations allows us to concentrate on concepts. The danger
when using a computer in statistics is that we will jump straight to the calculations
without looking closely at the data and asking the right questions about the data.
Our goal is to analyze, understand, and interpret data—which are numbers in a spe-
cific context—not just to perform calculations.

In order to understand a data set it is necessary to know how and why the data
were collected. In addition to considering the most widely used methods in statisti-
cal inference, we will consider issues in data collection and experimental design.
Together, these topics should provide the reader with the background needed to
read the scientific literature and to design and analyze simple research projects.

The preceding examples illustrate the kind of data to be considered in this
book. In fact, each of the examples will reappear as an exercise or example in an
appropriate chapter. As the examples show, research in the life sciences is usually
concerned with the comparison of two or more groups of observations, or with the
relationship between two or more variables. We will begin our study of statistics by
focusing on a simpler situation—observations of a single variable for a single group.
Many of the basic ideas of statistics will be introduced in this oversimplified context.
Two-group comparisons and more complicated analyses will then be discussed in
Chapter 7 and later chapters.

1.2 Types of Evidence
Researchers gather information and make inferences about the state of nature in a
variety of settings. Much of statistics deals with the analysis of data, but statistical
considerations often play a key role in the planning and design of a scientific inves-
tigation. We begin with examples of the three major kinds of evidence that one
encounters.

Lightning and Deafness On 15 July 1911, 65-year-old Mrs. Jane Decker was struck by
lightning while in her house. She had been deaf since birth, but after being struck,
she recovered her hearing, which led to a headline in the New York Times, “Light-
ning Cures Deafness.”7 Is this compelling evidence that lightning is a cure for
deafness? Could this event have been a coincidence? Are there other explanations
for her cure? �

The evidence discussed in Example 1.2.1 is anecdotal evidence. An anecdote is
a short story or an example of an interesting event, in this case, of lightning curing
deafness. The accumulation of anecdotes often leads to conjecture and to scientific
investigation, but it is predictable pattern, not anecdote, that establishes a scientific
theory.

Example
1.2.1
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Sexual Orientation Some research has suggested that there is a genetic basis for sexual
orientation. One such study involved measuring the midsagittal area of the anterior
commissure (AC) of the brain for 30 homosexual men, 30 heterosexual men, and
30 heterosexual women. The researchers found that the AC tends to be larger in
heterosexual women than in heterosexual men and that it is even larger in homosex-
ual men. These data are summarized in Table 1.2.1 and are shown graphically in
Figure 1.2.1.

Example
1.2.2
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Figure 1.2.1 Midsagittal area of the anterior
commissure (mm2)

The data suggest that the size of the AC in homosexual men is more like that of
heterosexual women than that of heterosexual men. When analyzing these data, we
should take into account two things. (1) The measurements for two of the homosexual
men were much larger than any of the other measurements; sometimes one or two
such outliers can have a big impact on the conclusions of a study. (2) Twenty-four of
the 30 homosexual men had AIDS, as opposed to 6 of the 30 heterosexual men; if
AIDS affects the size of the anterior commissure, then this factor could account for
some of the difference between the two groups of men.8 �

Example 1.2.2 presents an observational study. In an observational study the
researcher systematically collects data from subjects, but only as an observer and
not as someone who is manipulating conditions. By systematically examining all the
data that arise in observational studies, one can guard against selectively viewing
and reporting only evidence that supports a previous view. However, observational
studies can be misleading due to confounding variables. In Example 1.2.2 we noted
that having AIDS may affect the size of the anterior commissure. We would say that
the effect of AIDS is confounded with the effect of sexual orientation in this study.

Note that the context in which the data arose is of central importance in statis-
tics. This is quite clear in Example 1.2.2. The numbers themselves can be used to
compute averages or to make graphs, like Figure 1.2.1, but if we are to understand
what the data have to say, we must have an understanding of the context in which
they arose. This context tells us to be on the alert for the effects that other factors,
such as the impact of AIDS, may have on the size of the anterior commissure. Data
analysis without reference to context is meaningless.

Table 1.2.1 Midsagittal area of the anterior 
commissure (mm2)

Group
Average midsagittal area (mm2)

of the anterior commissure

Homosexual men 14.20

Heterosexual men 10.61

Heterosexual women 12.03
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Health and Marriage A study conducted in Finland found that people who were mar-
ried at midlife were less likely to develop cognitive impairment (particularly
Alzheimer’s disease) later in life.9 However, from an observational study such as
this we don’t know whether marriage prevents later problems or whether persons
who are likely to develop cognitive problems are less likely to get married. �

Toxicity in Dogs Before new drugs are given to human subjects, it is common practice
to first test them in dogs or other animals. In part of one study, a new investigational
drug was given to eight male and eight female dogs at doses of 8 mg/kg and 25 mg/kg.
Within each sex, the two doses were assigned at random to the eight dogs. Many
“endpoints” were measured, such as cholesterol, sodium, glucose, and so on, from
blood samples, in order to screen for toxicity problems in the dogs before starting
studies on humans. One endpoint was alkaline phosphatase level (or APL, measured
in U/l). The data are shown in Table 1.2.2 and plotted in Figure 1.2.2.10

Example
1.2.4

Example
1.2.3

Table 1.2.2 Alkaline phosphatase level (U/l)

Dose (mg/kg) Male Female

8 171 150

154 127

104 152

143 105

Average 143 133.5

25 80 101

149 113

138 161

131 197

Average 124.5 143

Figure 1.2.2 Alkaline phosphatase level in dogs
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The design of this experiment allows for the investigation of the interaction
between two factors: sex of the dog and dose.These factors interacted in the following
sense: For females, the effect of increasing the dose from 8 to 25 mg/kg was positive,
although small (the average APL increased from 133.5 to 143 U/l), but for males the
effect of increasing the dose from 8 to 25 mg/kg was negative (the average APL
dropped from 143 to 124.5 U/l). Techniques for studying such interactions will be
considered in Chapter 11. �

Example 1.2.4 presents an experiment, in that the researchers imposed the
conditions—in this case, doses of a drug—on the subjects (the dogs). By randomly
assigning treatments (drug doses) to subjects (dogs), we can get around the problem
of confounding that complicates observational studies and limits the conclusions
that we can reach from them. Randomized experiments are considered the “gold
standard” in scientific investigation, but they can also be plagued by difficulties.
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Often human subjects in experiments are given a placebo—an inert substance,
such as a sugar pill. It is well known that people often exhibit a placebo response;
that is, they tend to respond favorably to any treatment, even if it is only inert. This
psychological effect can be quite powerful. Research has shown that placebos are
effective for roughly one-third of people who are in pain; that is, one-third of pain
sufferers report their pain ending after being giving a “painkiller” that is, in fact, an
inert pill. For diseases such as bronchial asthma, angina pectoris (recurrent chest
pain caused by decreased blood flow to the heart), and ulcers, the use of placebos
has been shown to produce clinically beneficial results in over 60% of patients.11

Of course, if a placebo control is used, then the subjects must not be told which
group they are in—the group getting the active treatment or the group getting the
placebo.

Autism Autism is a serious condition in which children withdraw from normal social
interactions and sometimes engage in aggressive or repetitive behavior. In 1997, an
autistic child responded remarkably well to the digestive enzyme secretin. This led
to an experiment (a “clinical trial”) in which secretin was compared to a placebo. In
this experiment, children who were given secretin improved considerably. However,
the children given the placebo also improved considerably. There was no statistically
significant difference between the two groups. Thus, the favorable response in the
secretin group was considered to be only a “placebo response,” meaning, unfortu-
nately, that secretin was not found to be beneficial (beyond inducing a positive
response associated simply with taking a substance as part of an experiment).12

�

The word placebo means “I shall please.” The word nocebo (“I shall harm”) is
sometimes used to describe adverse reactions to perceived, but nonexistent, risks.The
following example illustrates the strength that psychological effects can have.

Bronchial Asthma A group of patients suffering from bronchial asthma were given a
substance that they were told was a chest-constricting chemical. After being given
this substance, several of the patients experienced bronchial spasms. However,
during part of the experiment, the patients were given a substance that they were
told would alleviate their symptoms. In this case, bronchial spasms were prevented.
In reality, the second substance was identical to the first substance: Both were
distilled water. It appears that it was the power of suggestion that brought on the
bronchial spasms; the same power of suggestion prevented spasms.13

�

Similar to placebo treatment is sham treatment, which can be used on animals
as well as humans. An example of sham treatment is injecting control animals with
an inert substance such as saline. In some studies of surgical treatments, control
animals (even, occasionally, humans) are given a “mock” surgery.

Mammary Artery Ligation In the 1950s, the surgical technique of internal mammary
artery ligation became a popular treatment for patients suffering from angina pec-
toris. In this operation the surgeon would ligate (tie) the mammary artery, with the
goal of increasing collateral blood flow to the heart. Doctors and patients alike
enthusiastically endorsed this surgery as an effective treatment. In 1958, studies of
internal mammary artery ligation in animals found that it was not effective and this
raised doubts about its usefulness on humans. A study was conducted in which
patients were randomly assigned to one of two groups. Patients in the treatment

Example
1.2.7

Example
1.2.6

Example
1.2.5
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group received the standard surgery. Patients in the control group received a sham
operation in which an incision was made, the mammary artery was exposed as in the
real operation, but the incision was closed without the artery being ligated. These
patients had no way of knowing that their operation was a sham. The rates of
improvement in the two groups of patients were nearly identical. (Patients who had
the sham operation did slightly better than patients who had the real operation, but
the difference was small.) A second randomized, controlled study also found that
patients who received the sham surgery did as well as those who had the real opera-
tion. As a result of these studies, physicians stopped using internal mammary artery
ligation.14

�

Blinding

In experiments on humans, particularly those that involve the use of placebos,
blinding is often used. This means that the treatment assignment is kept secret from
the experimental subject. The purpose of blinding the subject is to minimize the
extent to which his or her expectations influence the results of the experiment. If
subjects exhibit a psychological reaction to getting a medication, that placebo
response will tend to balance out between the two groups, so that any difference
between the groups can be attributed to the effect of the active treatment.

In many experiments the persons who evaluate the responses of the subjects are
also kept blind; that is, during the experiment they are kept ignorant of the treatment
assignment. Consider, for instance, the following:

In a study to compare two treatments for lung cancer, a radiologist reads 
X-rays to evaluate each patient’s progress. The X-ray films are coded so that
the radiologist cannot tell which treatment each patient received.

Mice are fed one of three diets; the effects on their liver are assayed by a 
research assistant who does not know which diet each mouse received.

Of course, someone needs to keep track of which subject is in which group, but that
person should not be the one who measures the response variable.The most obvious
reason for blinding the person making the evaluations is to reduce the possibility of
subjective bias influencing the observation process itself: Someone who expects or
wants certain results may unconsciously influence those results. Such bias can enter
even apparently “objective” measurements through subtle variation in dissection
techniques, titration procedures, and so on.

In medical studies of human beings, blinding often serves additional purposes.
For one thing, a patient must be asked whether he or she consents to participate in a
medical study. If the physician who asks the question already knows which treat-
ment the patient would receive, then by discouraging certain patients and encourag-
ing others, the physician can (consciously or unconsciously) create noncomparable
treatment groups. The effect of such biased assignment can be surprisingly large,
and it has been noted that it generally favors the “new” or “experimental” treat-
ment.15 Another reason for blinding in medical studies is that a physician may
(consciously or unconsciously) provide more psychological encouragement, or
even better care, to the patients who are receiving the treatment that the physician
regards as superior.

An experiment in which both the subjects and the persons making the evaluations
of the response are blinded is called a double-blind experiment. The first mammary
artery ligation experiment described in Example 1.2.7 was conducted as a double-blind
experiment.



The Need for Control Groups

Clofibrate An experiment was conducted in which subjects were given the drug clofi-
brate, which was intended to lower cholesterol and reduce the chance of death from
coronary disease. The researchers noted that many of the subjects did not take all the
medication that the experimental protocol called for them to take. They calculated the
percentage of the prescribed capsules that each subject took and divided the subjects
into two groups according to whether or not the subjects took at least 80% of the cap-
sules they were given. Table 1.2.3 shows that the five-year mortality rate for those who
took at least 80% of their capsules was much lower than the corresponding rate for sub-
jects who did not adhere to the protocol. On the surface, this suggests that taking the
medication lowers the chance of death. However, there was a placebo control group in
the experiment and many of the placebo subjects took fewer than 80% of their cap-
sules.The mortality rates for the two placebo groups—those who adhered to the proto-
col and those who did not—are quite similar to the rates for the clofibrate groups.

Example
1.2.8

12 Chapter 1 Introduction

Table 1.2.4 Number of colds in cold-vaccine experiment

Vaccine Placebo

n 201 203

Average number of colds
Previous year (from memory) 5.6 5.2

Current year 1.7 1.6

% reduction 70% 69%

The clofibrate experiment seems to indicate that there are two kinds of subjects:
those who adhere to the protocol and those who do not. The first group had a much
lower mortality rate than the second group.This might be due simply to better health
habits among people who are willing to follow a scientific protocol for five years than
among people who don’t adhere to the protocol. A further conclusion from the ex-
periment is that clofibrate does not appear to be any more effective than placebo in
reducing the death rate.Were it not for the presence of the placebo control group, the
researchers might well have drawn the wrong conclusion from the study and attrib-
uted the lower death rate among adherers to clofibrate itself, rather than to other
confounded effects that make the adherers different from the nonadherers.16

�

The Common Cold Many years ago, investigators invited university students who
believed themselves to be particularly susceptible to the common cold to be part of
an experiment.Volunteers were randomly assigned to either the treatment group, in
which case they took capsules of an experimental vaccine, or to the control group, in
which case they were told that they were taking a vaccine, but in fact were given a
placebo—capsules that looked like the vaccine capsules but that contained lactose
in place of the vaccine.17 As shown in Table 1.2.4, both groups reported having
dramatically fewer colds during the study than they had had in the previous year.

Example
1.2.9

Table 1.2.3 Mortality rates for the clofibrate experiment

Clofibrate Placebo

Adherence n 5-year mortality n 5-year mortality

80%Ú 708 15.0% 1813 15.1%

80%6 357 24.6% 882 28.2%
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Table 1.2.5 Coronary artery disease studies

Conclusion about 
effectiveness of surgery

Type of controls Effective Not effective Total number of studies

Randomized 1 7 8

Historical 16 5 21

The average number of colds per person dropped 70% in the treatment group. This
would have been startling evidence that the vaccine had an effect, except that the
corresponding drop in the control group was 69%. �

We can attribute much of the large drop in colds in Example 1.2.9 to the placebo
effect. However, another statistical concern is panel bias, which is bias attributable
to the study having influenced the behavior of the subjects—that is, people who
know they are being studied often change their behavior. The students in this study
reported from memory the number of colds they had suffered in the previous year.
The fact that they were part of a study might have influenced their behavior, so that
they were less likely to catch a cold during the study. Being in a study might also
have affected the way in which they defined having a cold—during the study, they
were “instructed to report to the health service whenever a cold developed”—so
that some illness may have gone unreported during the study. (How sick do you
have to be before you classify yourself as having a cold?)

Historical Controls

Researchers may be particularly reluctant to use randomized allocation in medical
experiments on human beings. Suppose, for instance, that researchers want to evalu-
ate a promising new treatment for a certain illness. It can be argued that it would be
unethical to withhold the treatment from any patients, and that therefore all current
patients should receive the new treatment. But then who would serve as a control
group? One possibility is to use historical controls—that is, previous patients with
the same illness who were treated with another therapy. One difficulty with histori-
cal controls is that there is often a tendency for later patients to show a better
response—even to the same therapy—than earlier patients with the same diagnosis.
This tendency has been confirmed, for instance, by comparing experiments conduct-
ed at the same medical centers in different years.18 One major reason for the ten-
dency is that the overall characteristics of the patient population may change with
time. For instance, because diagnostic techniques tend to improve, patients with a
given diagnosis (say, breast cancer) in 2001 may have a better chance of recovery
(even with the same treatment) than those with the same diagnosis in 1991, because
they were diagnosed earlier in the course of the disease.

Medical researchers do not agree on the validity and value of historical controls.
The following example illustrates the importance of this controversial issue.

Coronary Artery Disease Disease of the coronary arteries is often treated by surgery
(such as bypass surgery), but it can also be treated with drugs only. Many studies
have attempted to evaluate the effectiveness of surgical treatment for this common
disease. In a review of 29 of these studies, each study was classified as to whether it
used randomized controls or historical controls; the conclusions of the 29 studies are
summarized in Table 1.2.5.19

Example
1.2.10
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1.2.1 Fluoridation of drinking water has long been a
controversial issue in the United States. One of the first
communities to add fluoride to their water was
Newburgh, New York. In March 1944, a plan was an-
nounced to begin to add fluoride to the Newburgh water
supply on April 1 of that year. During the month of April,
citizens of Newburgh complained of digestive problems,
which were attributed to the fluoridation of the water.
However, there had been a delay in the installation of the
fluoridation equipment, so that fluoridation did not begin
until May 2.20 Explain how the placebo effect/nocebo
effect is related to this example.

1.2.2 Olestra is a no-calorie, no-fat additive that is used
in the production of some potato chips. After the Food
and Drug Administration approved the use of olestra,
some consumers complained that olestra caused stomach
cramps and diarrhea. A randomized, double-blind exper-
iment was conducted in which some subjects were given
bags of potato chips made with olestra and other subjects
were given ordinary potato chips. In the olestra group,
38% of the subjects reported having gastrointestinal
symptoms. However, in the group given regular potato
chips the corresponding percentage was 37%. (The two
percentages are not statistically significantly different.)21

Explain how the placebo effect/nocebo effect is related
to this example. Also explain why it was important for
this experiment to be double-blind.

1.2.3 (Hypothetical) In a study of acupuncture, patients
with headaches are randomly divided into two groups.
One group is given acupuncture and the other group is
given aspirin. The acupuncturist evaluates the effective-
ness of the acupuncture and compares it to the results
from the aspirin group. Explain how lack of blinding bias-
es the experiment in favor of acupuncture.

1.2.4 Randomized, controlled experiments have found
that vitamin C is not effective in treating terminal cancer

patients.22 However, a 1976 research paper reported that
terminal cancer patients given vitamin C survived much
longer than did historical controls. The patients treated
with vitamin C were selected by surgeons from a group of
cancer patients in a hospital.23 Explain how this experi-
ment was biased in favor of vitamin C.

1.2.5 On 3 November 2009, the blog lifehacker.com con-
tained a posting by an individual with chronic toenail
fungus. He remarked that after many years of suffering
and trying all sorts of cures, he resorted to sanding his
toenail as thin as he could tolerate, followed by daily
application of vinegar and hydrogen-peroxide-soaked
bandaids on his toenail. He repeated the vinegar perox-
ide bandaging for 100 days. After this time his nail grew
out and the fungus was gone. Using the language of statis-
tics, what kind of evidence is this? Is this convincing
evidence that this procedure is an effective cure of toenail
fungus?

1.2.6 For each of the following cases [(a), (b), and (c)],
(I) state whether the study should be observational or

experimental.
(II) state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or
double-blind, who should be blinded?
(a) An investigation of whether taking aspirin re-

duces one’s chance of having a heart attack.
(b) An investigation of whether babies born into

poor families (family income below $25,000) are
more likely to weigh less than 5.5 pounds at birth
than babies born into wealthy families (family
income above $65,000).

(c) An investigation of whether the size of the mid-
sagittal plane of the anterior commisssure (a
part of the brain) of a man is related to the sexu-
al orientation of the man.

Exercises 1.2.1–1.2.8

It would appear from Table 1.2.5 that enthusiasm for surgery is much more common
among researchers who use historical controls than among those who use random-
ized controls. �

Proponents of the use of historical controls argue that statistical adjustment can
provide meaningful comparison between a current group of patients and a group of
historical controls; for instance, if the current patients are younger than the histori-
cal controls, then the data can be analyzed in a way that adjusts, or corrects, for the
effect of age. Critics reply that such adjustment may be grossly inadequate.

The concept of historical controls is not limited to medical studies. The issue
arises whenever a researcher compares current data with past data. Whether the
data are from the lab, the field, or the clinic, the researcher must confront the question:
Can the past and current results be meaningfully compared? One should always at
least ask whether the experimental material, and/or the environmental conditions,
may have changed enough over time to distort the comparison.
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Population
Inference

Random sampling

Sample of n

Figure 1.3.1 Sampling
from a population

1.3 Random Sampling
In order to address research questions with data, we first must consider how those
data are to be gathered. How we gather our data has tremendous implications on
our choice of analysis methods and even on the validity of our studies. In this section
we will examine some common types of data-gathering methods with special
emphasis on the simple random sample.

Samples and Populations

Before gathering data, we first consider the scope of our study by identifying the
population. The population consists of all subjects/animals/specimens/plants, and so
on, of interest. The following are all examples of populations:

• All birch tree seedlings in Florida

• All raccoons in Montaña de Oro State Park

• All people with schizophrenia in the United States

• All 100-ml water specimens in Chorro Creek

Typically we are unable to observe the entire population and therefore we must be
content with gathering data from a subset of the population, a sample of size n. From
this sample we make inferences about the population as a whole (see Figure 1.3.1).The
following are all examples of samples:

• A selection of eight ( ) Florida birch seedlings grown in a greenhouse.

• Thirteen ( ) raccoons captured in traps at the Montaña de Oro campground.

• Forty-two ( ) schizophrenic patients who respond to an advertisement
in a U.S. newpaper.

• Ten ( ) 100-ml vials of water collected one day at 10 locations along
Chorro Creek.

n = 10

n = 42

n = 13

n = 8

1.2.7 (Hypothetical) In order to assess the effectiveness
of a new fertilizer, researchers applied the fertilizer to the
tomato plants on the west side of a garden but did not
fertilize the plants on the east side of the garden. They
later measured the weights of the tomatoes produced by
each plant and found that the fertilized plants grew larger
tomatoes than did the nonfertilized plants. They conclud-
ed that the fertilizer works.
(a) Was this an experiment or an observational study?

Why?
(b) This study is seriously flawed. Use the language of

statistics to explain the flaw and how this affects the
validity of the conclusion reached by the researchers.

(c) Could this study have used the concept of blinding
(i.e., does the word “blind” apply to this study)? If so,
how? Could it have been double-blind? If so, how?

1.2.8 Reseachers studied 1,718 persons over age 65 living
in North Carolina. They found that those who attended
religious services regularly were more likely to have
strong immune systems (as determined by the blood
levels of the protein interleukin-6) than those who
didn’t.24 Does this mean that attending religious services
improves one’s health? Why or why not?
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Remark There is some potential for confusion between the statistical meaning of
the term sample and the sense in which this word is sometimes used in biology. If a
biologist draws blood from 20 people and measures the glucose concentration in
each, she might say she has 20 samples of blood. However, the statistician says she
has one sample of 20 glucose measurements; the sample size is . In the interest
of clarity, throughout this book we will use the term specimen where a biologist
might prefer sample. So we would speak of glucose measurements on a sample of
20 specimens of blood.

Ideally our sample will be a representative subset of the population; however,
unless we are careful, we may end up obtaining a biased sample. A biased sample
systematically overestimates or systematically underestimates a characteristic of the
population. For example, consider the raccoons from the sample described previously
that are captured in traps at a campground. These raccoons may systematically dif-
fer from the population; they may be larger (from having ample access to food from
dumpsters and campers), less timid (from being around people who feed them), and
may be even longer lived than the general population of raccoons in the entire park.

One method to ensure that samples will be (in the long run) representative of
the population is to use random sampling.

Definition of a Simple Random Sample

Informally, the process of obtaining a simple random sample can be visualized in
terms of labeled tickets, such as those used in a lottery or raffle. Suppose that each
member of the population (e.g., raccoon, patient, plant) is represented by one ticket,
and that the tickets are placed in a large box and thoroughly mixed. Then n tickets
are drawn from the box by a blindfolded assistant, with new mixing after each ticket
is removed. These n tickets constitute the sample. (Equivalently, we may visualize
that n assistants reach in the box simultaneously, each assistant drawing one ticket.)

More abstractly, we may define random sampling as follows.

A Simple Random Sample
A simple random sample of n items is a sample in which (a) every member of
the population has the same chance of being included in the sample, and (b) the
members of the sample are chosen independently of each other. [Requirement
(b) means that the chance of a given member of the population being chosen
does not depend on which other members are chosen.]*

Simple random sampling can be thought of in other, equivalent, ways. We may
envision the sample members being chosen one at a time from the population;
under simple random sampling, at each stage of the drawing, every remaining mem-
ber of the population is equally likely to be the next one chosen. Another view is to
consider the totality of possible samples of size n. If all possible samples are equally
likely to be obtained, then the process gives a simple random sample.

n = 20

*Technically, requirement (b) is that every pair of members of the population has the same chance of being
selected for the sample, every group of 3 members of the population has the same chance of being selected for
the sample, and so on. In contrast to this, suppose we had a population with 30 persons in it and we wrote the
names of 3 persons on each of 10 tickets. We could then choose one ticket in order to get a sample of size ,
but this would not be a simple random sample, since the pair (1,2) could end up in the sample but the pair (1,4)
could not. Here the selections of members of the sample are not independent of each other. [This kind of sam-
pling is known as “cluster sampling,” with 10 clusters of size 3.] If the population is infinite, then the technical
definition that all subsets of a given size are equally likely to be selected as part of the sample is equivalent to
the requirement that the members of the sample are chosen independently.

n = 3
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*Most calculators generate random numbers expressed as decimal numbers between 0 and 1; to convert these to
random digits, simply ignore the leading zero and decimal and read the digits that follow the decimal.To generate
a long string of random digits, simply call the random number function on the calculator repeatedly.

Employing Randomness

When conducting statistical investigations, we will need to make use of randomness.
As previously discussed, we obtain simple random samples randomly—every mem-
ber of the population has the same chance of being selected. In Chapter 7 we shall
discuss experiments in which we wish to compare the effects of different treatments
on members of a sample. To conduct these experiments we will have to assign the
treatments to subjects randomly—so that every subject has the same chance of
receiving treatment A as they do treatment B.

Unfortunately, as a practical matter, humans are not very capable of mentally
employing randomness. We are unable to eliminate unconscious bias that often
leads us to systematically excluding or including certain individuals in our sample
(or at least decreasing or increasing the chance of choosing certain individuals). For
this reason, we must use external resources for selecting individuals when we want a
random sample: mechanical devices such as dice, coins, and lottery tickets; electron-
ic devices that produce random digits such as computers and calculators; or tables of
random digits such as Table 1 in the back of this book. Although straightforward,
using mechanical devices such as tickets in a box is impractical, so we will focus on
the use of random digits for sample selection.

How to Choose a Random Sample

The following is a simple procedure for choosing a random sample of n items from a
finite population of items.

(a) Create the sampling frame: a list of all members of the population with unique
identification numbers for each member.All identification numbers must have
the same number of digits; for instance, if the population contains 75 items,
the identification numbers could be 01, 02, . . . , 75.

(b) Read numbers from Table 1, a calculator, or computer. Reject any numbers
that do not correspond to any population member. (For example, if the popu-
lation has 75 items that have been assigned identification numbers 01, 02, . . . , 75,
then skip over the numbers 76, 77, . . . , 99 and 00.) Continue until n numbers
have been acquired. (Ignore any repeated occurrence of the same number.)

(c) The population members with the chosen identification numbers constitute
the sample.

The following example illustrates this procedure.

Suppose we are to choose a random sample of size 6 from a population of 75 members.
Label the population members 01, 02, . . . , 75. Use Table 1, a calculator, or a computer
to generate a string of random digits.* For example, our calculator might produce
the following string:

8 3 8 7 1 7 9 4 0 1 6 2 5 3 4 5 9 7 5 3 9 8 2 2

As we examine two-digit pairs of numbers, we ignore numbers greater than 75 as
well as any pairs that identify a previously chosen individual.

Thus, the population members with the following identification numbers will consti-
tute the sample: 17, 01, 62, 53, 45, 22. �

8 3    8 7   1 7   9 4   0 1  6 2  5 3  4 5   9 7    5 3    9 8   2 2

Example
1.3.1



Remark In calling the digits in Table 1 or your calculator or computer random
digits, we are using the term random loosely. Strictly speaking, random digits are
digits produced by a random process—for example, tossing a 10-sided die. The
digits in Table 1 or in your calculator or computer are actually pseudorandom
digits; they are generated by a deterministic (although possibly very complex) process
that is designed to produce sequences of digits that mimic randomly generated
sequences.

Remark If the population is large, then computer software can be quite helpful in
generating a sample. If you need a random sample of size 15 from a population with
2,500 members, have the computer (or calculator) generate 15 random numbers
between 1 and 2,500. (If there are duplicates in the set of 15, then go back and get
more random numbers.)

Practical Concerns When Random Sampling

In many cases, obtaining a proper simple random sample is difficult or impossible.
For example, to obtain a random sample of raccoons from Montaña de Oro State
Park, one would first have to create the sampling frame, which provides a unique
number for each raccoon in the park.Then, after generating the list of random num-
bers to identify our sample, one would have to capture those particular raccoons.
This is likely an impossible task.

In practice, when it is possible to obtain a proper random sample, one should.
When a proper random sample is impractical, it is important to take all precau-
tions to ensure that the subjects in the study may be viewed as if they were ob-
tained by random sampling from some population. That is, the sample should be
comprised of individuals that all have the same chance of being selected from the
population, and the individuals should be chosen independently. To do this, the
first step is to define the population. The next step is to scrutinize the procedure by
which the observational units are selected and to ask: Could the observations have
been chosen at random? With the raccoon example, this might mean that we first
define the population of raccoons by creating a sharp geographic boundary based
on raccoon habitat and place traps at randomly chosen locations within the popu-
lation habitat using a variety of baits and trap sizes. (We could use random num-
bers to generate latitude and longitude coordinates within the population habitat).
While still less than ideal (some raccoons might be trap shy and baby raccoons
may not enter the traps at all), this is certainly better than simply capturing rac-
coons at one nonrandomly chosen atypical location (e.g., the campground) within
the park. Presumably, the vast majority of raccoons now have the same chance of
being trapped (i.e., equally likely to be selected) and capturing one raccoon has little
or no bearing on the capture of any other (i.e., they can be considered to be inde-
pendently chosen). Thus, it seems reasonable to treat the observations as if they
were chosen at random.

Nonsimple Random Sampling Methods

There are other kinds of sampling that are random in a sense, but that are not simple.
Two common nonsimple random sampling techniques are the random cluster sample
and stratified random sample. To illustrate the concept of a cluster sample, consider
a modification to the lottery method of generating a simple random sample. With
cluster sampling, rather than assigning a unique ticket (or ID number) for each

18 Chapter 1 Introduction
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Population

Sample

Figure 1.3.2 Random
cluster sampling. The dots
represent individuals
within the population that
are grouped into clusters
(circles). Individuals in
entire clusters are sampled
from the population to
form the sample.

Population

Sample

Figure 1.3.3 Stratified
random sampling. The dots
represent individuals within
the population that are
grouped into strata.
Individuals from each
stratum are randomly
sampled and combined 
to form the sample.

member of the population, IDs are assigned to entire groups of individuals. As tick-
ets are drawn from the box, entire groups of individuals are selected for the sample
as in the following example and Figure 1.3.2.

La Graciosa Thistle The La Graciosa thistle (Cirsium loncholepis) is an endangered
plant native to the Guadalupe Dunes on the central coast of California. In a seed
germination study, 30 plants were randomly chosen from the population of plants in
the Guadalupe dunes and all seeds from the 30 plants were harvested. The seeds
form a cluster sample from the population of all La Graciosa thistle seeds in
Guadalupe while the individual plants were used to identify the clusters.25

�

A stratified random sample is chosen by first dividing the population into
strata—homogeneous collections of individuals.Then, many simple random samples
are taken—one within each stratum—and combined to comprise the sample (see
Figure 1.3.3). The following is an example of a stratified random sample.

Example
1.3.2

Sand Crabs In a study of parasitism of sand crabs (Emerita analoga), researchers
obtained a stratified random sample of crabs by dividing a beach into 5-meter strips
parallel to the water’s edge. These strips were chosen as the strata because crab
parasite loads may differ systematically based on the distance to the water’s edge,
thus making the parasite load for crabs within each stratum more similar than loads

Example
1.3.3
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across strata. The first stratum was the 5-meter strip of beach just under the water’s
edge parallel to the shoreline.The second stratum was the 5-meter strip of beach just
above the shoreline, followed by the third and fourth strata—the next two 5-meter
strips above the shoreline. Within each strata, 25 crabs were randomly sampled,
yielding a total sample size of 100 crabs.26

�

The majority of statistical methods discussed in this textbook will assume we
are working with data gathered from a simple random sample. A sample chosen by
simple random sampling is often called a random sample. But note that it is actually
the process of sampling rather than the sample itself that is defined as random;
randomness is not a property of the particular sample that happens to be chosen.

Sampling Error

How can we provide a rationale for inference from a limited sample to a much larger
population? The approach of statistical theory is to refer to an idealized model of
the sample–population relationship. In this model, which is called the random sampling
model, the sample is chosen from the population by random sampling. The model is
represented schematically in Figure 1.3.1.

The random sampling model is useful because it provides a basis for answering
the question, How representative (of the population) is a sample likely to be? The
model can be used to determine how much an inference might be influenced by
chance, or “luck of the draw.” More explicitly, a randomly chosen sample will usu-
ally not exactly resemble the population from which it was drawn. The discrepancy
between the sample and the population is called chance error due to sampling or
sampling error. We will see in later chapters how statistical theory derived from the
random sampling model enables us to set limits on the likely amount of error due to
sampling in an experiment. The quantification of such error is a major contribution
that statistical theory has made to scientific thinking.

Because our samples are chosen randomly, there will always be sampling error
present. If we sample nonrandomly, however, we may exacerbate the sampling error
in unpredictable ways such as by introducing sampling bias, which is a systematic
tendency for some individuals of the population to be selected more readily than
others. The following two examples illustrate sampling bias.

Lengths of Fish A biologist plans to study the distribution of body length in a certain
population of fish in the Chesapeake Bay. The sample will be collected using a
fishing net. Smaller fish can more easily slip through the holes in the net. Thus,
smaller fish are less likely to be caught than larger ones, so that the sampling proce-
dure is biased. �

Sizes of Nerve Cells A neuroanatomist plans to measure the sizes of individual nerve
cells in cat brain tissue. In examining a tissue specimen, the investigator must decide
which of the hundreds of cells in the specimen should be selected for measurement.
Some of the nerve cells are incomplete because the microtome cut through them
when the tissue was sectioned. If the size measurement can be made only on com-
plete cells, a bias arises because the smaller cells had a greater chance of being
missed by the microtome blade. �

When the sampling procedure is biased, the sample may not accurately represent
the population, because it is systematically distorted. For instance, in Example 1.3.4

Example
1.3.5

Example
1.3.4



Section 1.3 Random Sampling 21

smaller fish will tend to be underrepresented in the sample, so that the length of the
fish in the sample will tend to be larger than those in the population.

The following example illustrates a kind of nonrandomness that is different
from bias.

Sucrose in Beet Roots An agronomist plans to sample beet roots from a field in order
to measure their sucrose content. Suppose she were to take all her specimens from a
randomly selected small area of the field. This sampling procedure would not be
biased but would tend to produce too homogeneous a sample, because environmental
variation across the field would not be reflected in the sample. �

Example 1.3.6 illustrates an important principle that is sometimes overlooked
in the analysis of data: In order to check applicability of the random sampling
model, one needs to ask not only whether the sampling procedure might be biased,
but also whether the sampling procedure will adequately reflect the variability
inherent in the population. Faulty information about variability can distort scientif-
ic conclusions just as seriously as bias can.

We now consider some examples where the random sampling model might rea-
sonably be applied.

Fungus Resistance in Corn A certain variety of corn is resistant to fungus disease. To
study the inheritance of this resistance, an agronomist crossed the resistant variety
with a nonresistant variety and measured the degree of resistance in the progeny
plants. The actual progeny in the experiment can be regarded as a random sample
from a conceptual population of all potential progeny of that particular cross. �

When the purpose of a study is to compare two or more experimental condi-
tions, a very narrow definition of the population may be satisfactory, as illustrated in
the next example.

Nitrite Metabolism To study the conversion of nitrite to nitrate in the blood, re-
searchers injected four New Zealand White rabbits with a solution of radioactively
labeled nitrite molecules. Ten minutes after injection, they measured for each rabbit
the percentage of the nitrite that had been converted to nitrate.27 Although the four
animals were not literally chosen at random from a specified population, neverthe-
less it might be reasonable to view the measurements of nitrite metabolism as a ran-
dom sample from similar measurements made on all New Zealand White rabbits.
(This formulation assumes that age and sex are irrelevant to nitrite metabolism.) �

Treatment of Ulcerative Colitis A medical team conducted a study of two therapies,
A and B, for treatment of ulcerative colitis. All the patients in the study were refer-
ral patients in a clinic in a large city. Each patient was observed for satisfactory
“response” to therapy. In applying the random sampling model, the researchers
might want to make an inference to the population of all ulcerative colitis patients
in urban referral clinics. First, consider inference about the actual probabilities of
response; such an inference would be valid if the probability of response to each
therapy is the same at all urban referral clinics. However, this assumption might be
somewhat questionable, and the investigators might believe that the population
should be defined very narrowly—for instance, as “the type of ulcerative colitis
patients who are referred to this clinic.” Even such a narrow population can be of
interest in a comparative study. For instance, if treatment A is better than treatment
B for the narrow population, it might be reasonable to infer that A would be better

Example
1.3.9

Example
1.3.8

Example
1.3.7

Example
1.3.6



than B for a broader population (even if the actual response probabilities might be
different in the broader population). In fact, it might even be argued that the broad
population should include all ulcerative colitis patients, not merely those in urban
referral clinics. �

It often happens in research that, for practical reasons, the population actually
studied is narrower than the population that is of real interest. In order to apply the
kind of rationale illustrated in Example 1.3.9, one must argue that the results in the
narrowly defined population (or, at least, some aspects of those results) can mean-
ingfully be extrapolated to the population of interest. This extrapolation is not a
statistical inference; it must be defended on biological, not statistical, grounds.

In Section 2.8 we will say more about the connection between samples and pop-
ulations as we further develop the concept of statistical inference.

Nonsampling Errors

In addition to sampling errors, other concerns can arise in statistical studies. A 
nonsampling error is an error that is not caused by the sampling method; that is, a
nonsampling error is one that would have arisen even if the researcher had a census
of the entire population. For example, the way in which questions are worded can
greatly influence how people answer them, as Example 1.3.10 shows.

Abortion Funding In 1991, the U.S. Supreme Court made a controversial ruling up-
holding a ban on abortion counseling in federally financed family-planning clinics.
Shortly after the ruling, a sample of 1,000 people were asked,“As you may know, the
U.S. Supreme Court recently ruled that the federal government is not required to
use taxpayer funds for family planning programs to perform, counsel, or refer for
abortion as a method of family planning. In general, do you favor or oppose this
ruling?” In the sample, 48% favored the ruling, 48% were opposed, and 4% had
no opinion.

A separate opinion poll conducted at nearly the same time, but by a different
polling organization, asked over 1,200 people,“Do you favor or oppose that Supreme
Court decision preventing clinic doctors and medical personnel from discussing
abortion in family-planning clinics that receive federal funds?” In this sample, 33%
favored the decision and 65% opposed it.28 The difference in the percentages
favoring the opinion is too large to be attributed to chance error in the sampling. It
seems that the way in which the question was worded had a strong impact on the
respondents. �

Another type of nonsampling error is nonresponse bias, which is bias caused by
persons not responding to some of the questions in a survey or not returning a writ-
ten survey. It is common to have only one-third of those receiving a survey in the
mail complete the survey and return it to the researchers. (We consider the people
receiving the survey to be part of the sample, even if some of them don’t complete
the entire survey, or even return the survey at all.) If the people who respond are un-
like those who choose not to respond—and this is often the case, since people with
strong feelings about an issue tend to complete a questionnaire, while others will
ignore it—then the data collected will not accurately represent the population.

HIV Testing A sample of 949 men were asked if they would submit to an HIV test of
their blood. Of the 782 who agreed to be tested, 8 (1.02%) were found to be HIV
positive. However, some of the men refused to be tested. The health researchers
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1.3.1 In each of the following studies, identify which
sampling technique best describes the way the data were
collected (or could be treated as if they were collected):
simple random sampling, random cluster sampling, or
stratified random sampling. For cluster samples identify
the clusters and for stratified samples identify the strata.

(a) All 257 leukemia patients from three randomly
chosen pediatric clinics in the United States were
enrolled in a clinical trial for a new drug.

(b) A total of twelve 10-g soil specimens were collected
from random locations on a farm to study physical
and chemical soil profiles.

(c) In a pollution study three 100-ml air specimens were
collected at each of four specific altitudes (100 m,
500 m, 1000 m, 2000 m) for a total of twelve 100-ml
specimens.

(d) A total of 20 individual grapes were picked from
random vines in a vineyard to evaluate readiness for
harvest.

conducting the study had access to serum specimens that had been taken earlier
from these 167 men and found that 9 of them (5.4%) were HIV positive.29 Thus,
those who refused to be tested were much more likely to have HIV than those who
agreed to be tested. An estimate of the HIV rate based only on persons who agree
to be tested is likely to substantially underestimate the true prevalence. �

There are other cases in which an experimenter is faced with the vexing problem
of missing data—that is, observations that were planned but could not be made. In
addition to nonresponse, this can arise because experimental animals or plants die,
because equipment malfunctions, or because human subjects fail to return for a
follow-up observation.

A common approach to the problem of missing data is to simply use the remain-
ing data and ignore the fact that some observations are missing. This approach is
temptingly simple but must be used with extreme caution, because comparisons
based on the remaining data may be seriously biased. For instance, if observations on
some experimental mice are missing because the mice died of causes related to the
treatment they received, it is obviously not valid to simply compare the mice that
survived. As another example, if patients drop out of a medical study because they
think their treatment is not working, then analysis of the remaining patients could
produce a greatly distorted picture.

Naturally, it is best to make every effort to avoid missing data. But if data are
missing, it is crucial that the possible reasons for the omissions be considered in
interpreting and reporting the results.

Data can also be misleading if there is bias in how the data are collected. People
have difficulty remembering the dates on which events happen and they tend to give
unreliable answers if asked a question such as “How many times per week do you
exercise?” They may also be biased as they make observations, as the following
example shows.

Sugar and Hyperactivity Mothers who thought that their young sons were “sugar sen-
sitive” were randomly divided into two groups. Those in the first group were told
that their sons had been given a large dose of sugar, whereas those in the second
group were told that their sons had been given a placebo. In fact, all the boys had
been given the placebo. Nonetheless, the mothers in the first group rated their sons
to be much more hyperactive during a 25-minute study period than did the mothers
in the second group.30 Neutral measurements found that boys in the first group were
actually a bit less active than those in the second group. Numerous other studies
have failed to find a link between sugar consumption and activity in children,
despite the widespread belief that sugar causes hyperactive behavior. It seems that
the expectations that these mothers had colored their observations.31

�
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(e) Twenty-four dogs (eight randomly chosen small
breed, eight randomly chosen medium breed, and
eight randomly chosen large breed) were enrolled in
an experiment to evaluate a new training program.

1.3.2 For each of the following studies, identify the
source(s) of sampling bias and describe (i) how it might
affect the study conclusions and (ii) how you might alter
the sampling method to avoid the bias.
(a) Eight hundred volunteers were recruited from night-

clubs to enroll in an experiment to evaluate a new
treatment for social anxiety.

(b) In a water pollution study, water specimens were
collected from a stream on 15 rainy days.

(c) To study the size (radius) distribution of scrub oaks
(shrubby oak trees), 20 oak trees were selected by
using random latitude/longitude coordinates. If the
random coordinate fell within the canopy of a tree,
the tree was selected; if not, another random location
was generated.

(d) To study the size distribution of rock cod
(Epinephelus puscus) off the coast of southeastern
Australia, the lengths and weights were recorded
for all cod captured by a commercial fishing vessel
on one day (using standard hook-and-line fishing
methods).

1.3.3 (A fun activity) Write the digits 1, 2, 3, 4 in order
on an index card. Bring this card to a busy place (e.g.,
dining hall, library, university union) and ask at least 30
people to look at the card and select one of the digits at
random in their head. Record their responses.

(a) If people can think “randomly,” about what fraction
of the people should respond with the digit 1? 2?
3? 4?

(b) What fraction of those surveyed responded with the
digit 1? 2? 3? 4?

(c) Do the results suggest anything about people’s abili-
ty to choose randomly?

1.3.4 Consider a population consisting of 600 individu-
als with unique IDs: 001, 002, . . . , 600. Use the following
string of random digits to select a simple random sample
of 5 individuals. List the IDs of the individuals selected
for your sample.

7 2 8 1 2 1 8 7 6 4 4 2 1 2 1 5 9 3 7 8 7 8 0 3 5 4 7 2 1 6 5 9 6 8 5 1

1.3.5 (Sampling exercise) Refer to the collection of 100
ellipses shown in the accompanying figure, which can be
thought of as representing a natural population of the
mythical organism C. ellipticus. The ellipses have been
given identification numbers 00, 01, . . ., 99 for conven-
ience in sampling. Certain individuals of C. ellipticus are
mutants and have two tail bristles.

(a) Use your judgment to choose a sample of size 10
from the population that you think is representative
of the entire population. Note the number of mutants
in the sample.

(b) Use random digits (from Table 1 or your calculator
or computer) to choose a random sample of size 10
from the population and note the number of mutants
in the sample.

1.3.6 (Sampling exercise) Refer to the collection of 100
ellipses.

(a) Use random digits (for Table 1 or your calculator or
computer) to choose a random sample of size 5 from
the population and note the number of mutants in
the sample.

(b) Repeat part (a) nine more times, for a total of 10
samples. (Some of the 10 samples may overlap.)

To facilitate pooling of results from the entire class, re-
port your results in the following format:

NUMBER OF 
MUTANTS NONMUTANTS

FREQUENCY 
(NO. OF SAMPLES)

0 5

1 4

2 3

3 2

4 1

5 0

Total: 10
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